library(sesame)
sesameDataCache()
The main function to calculate the quality metrics is
sesameQC_calcStats
. This function takes a SigDF, calculates
the QC statistics, and returns a single S4 sesameQC
object,
which can be printed directly to the console. To calculate QC metrics on
a given list of samples or all IDATs in a folder, one can use
sesameQC_calcStats
within the standard
openSesame
pipeline. When used with
openSesame
, a list of sesameQC
s will be
returned. Note that one should turn off preprocessing using
prep=""
:
## calculate metrics on all IDATs in a specific folder
= openSesame(idat_dir, prep="", func=sesameQC_calcStats) qcs
SeSAMe divides sample quality metrics into multiple groups. These groups are listed below and can be referred to by short keys. For example, “intensity” generates signal intensity-related quality metrics.
Short.Key | Description |
---|---|
detection | Signal Detection |
numProbes | Number of Probes |
intensity | Signal Intensity |
channel | Color Channel |
dyeBias | Dye Bias |
betas | Beta Value |
By default, sesameQC_calcStats
calculates all QC groups.
To save time, one can compute a specific QC group by specifying one or
multiple short keys in the funs=
argument:
<- sesameDataGet("EPIC.5.SigDF.normal")[1:2] # get two examples
sdfs ## only compute signal detection stats
= openSesame(sdfs, prep="", func=sesameQC_calcStats, funs="detection")
qcs 1]] qcs[[
##
## =====================
## | Detection
## =====================
## N. Probes w/ Missing Raw Intensity : 0 (num_dtna)
## % Probes w/ Missing Raw Intensity : 0.0 % (frac_dtna)
## N. Probes w/ Detection Success : 838020 (num_dt)
## % Detection Success : 96.7 % (frac_dt)
## N. Detection Succ. (after masking) : 838020 (num_dt_mk)
## % Detection Succ. (after masking) : 96.7 % (frac_dt_mk)
## N. Probes w/ Detection Success (cg) : 835491 (num_dt_cg)
## % Detection Success (cg) : 96.7 % (frac_dt_cg)
## N. Probes w/ Detection Success (ch) : 2471 (num_dt_ch)
## % Detection Success (ch) : 84.3 % (frac_dt_ch)
## N. Probes w/ Detection Success (rs) : 58 (num_dt_rs)
## % Detection Success (rs) : 98.3 % (frac_dt_rs)
We consider signal detection the most important QC metric.
One can retrieve the actual stat numbers from sesameQC
using the sesameQC_getStats (the following generates the fraction of
probes with detection success):
sesameQC_getStats(qcs[[1]], "frac_dt")
## [1] 0.9666915
After computing the QCs, one can optionally combine the
sesameQC
objects into a data frame for easy comparison.
## combine a list of sesameQC into a data frame
head(do.call(rbind, lapply(qcs, as.data.frame)))
Note that when the input is an SigDF
object, calling
sesameQC_calcStats
within openSesame
and as a
standalone function are equivalent.
<- sesameDataGet('EPIC.1.SigDF')
sdf = openSesame(sdf, prep="", func=sesameQC_calcStats, funs=c("detection"))
qc ## equivalent direct call
= sesameQC_calcStats(sdf, c("detection"))
qc qc
##
## =====================
## | Detection
## =====================
## N. Probes w/ Missing Raw Intensity : 0 (num_dtna)
## % Probes w/ Missing Raw Intensity : 0.0 % (frac_dtna)
## N. Probes w/ Detection Success : 834922 (num_dt)
## % Detection Success : 96.3 % (frac_dt)
## N. Detection Succ. (after masking) : 834922 (num_dt_mk)
## % Detection Succ. (after masking) : 96.3 % (frac_dt_mk)
## N. Probes w/ Detection Success (cg) : 832046 (num_dt_cg)
## % Detection Success (cg) : 96.4 % (frac_dt_cg)
## N. Probes w/ Detection Success (ch) : 2616 (num_dt_ch)
## % Detection Success (ch) : 89.2 % (frac_dt_ch)
## N. Probes w/ Detection Success (rs) : 58 (num_dt_rs)
## % Detection Success (rs) : 98.3 % (frac_dt_rs)
SeSAMe features comparison of your sample with public data sets. The
sesameQC_rankStats()
function ranks the input
sesameQC
object with sesameQC
calculated from
public datasets. It shows the rank percentage of the input sample as
well as the number of datasets compared.
<- sesameDataGet('EPIC.1.SigDF')
sdf <- sesameQC_calcStats(sdf, "intensity")
qc qc
##
## =====================
## | Signal Intensity
## =====================
## Mean sig. intensity : 3171.21 (mean_intensity)
## Mean sig. intensity (M+U) : 6342.41 (mean_intensity_MU)
## Mean sig. intensity (Inf.II) : 2991.85 (mean_ii)
## Mean sig. intens.(I.Grn IB) : 3004.33 (mean_inb_grn)
## Mean sig. intens.(I.Red IB) : 4670.97 (mean_inb_red)
## Mean sig. intens.(I.Grn OOB) : 318.55 (mean_oob_grn)
## Mean sig. intens.(I.Red OOB) : 606.99 (mean_oob_red)
## N. NA in M (all probes) : 0 (na_intensity_M)
## N. NA in U (all probes) : 0 (na_intensity_U)
## N. NA in raw intensity (IG) : 0 (na_intensity_ig)
## N. NA in raw intensity (IR) : 0 (na_intensity_ir)
## N. NA in raw intensity (II) : 0 (na_intensity_ii)
sesameQC_rankStats(qc, platform="EPIC")
##
## =====================
## | Signal Intensity
## =====================
## Mean sig. intensity : 3171.21 (mean_intensity) - Rank 15.7% (N=636)
## Mean sig. intensity (M+U) : 6342.41 (mean_intensity_MU)
## Mean sig. intensity (Inf.II) : 2991.85 (mean_ii) - Rank 15.6% (N=636)
## Mean sig. intens.(I.Grn IB) : 3004.33 (mean_inb_grn) - Rank 7.5% (N=636)
## Mean sig. intens.(I.Red IB) : 4670.97 (mean_inb_red) - Rank 21.2% (N=636)
## Mean sig. intens.(I.Grn OOB) : 318.55 (mean_oob_grn) - Rank 4.2% (N=636)
## Mean sig. intens.(I.Red OOB) : 606.99 (mean_oob_red) - Rank 3.6% (N=636)
## N. NA in M (all probes) : 0 (na_intensity_M)
## N. NA in U (all probes) : 0 (na_intensity_U)
## N. NA in raw intensity (IG) : 0 (na_intensity_ig)
## N. NA in raw intensity (IR) : 0 (na_intensity_ir)
## N. NA in raw intensity (II) : 0 (na_intensity_ii)
SeSAMe provides functions to create QC plots. Some functions takes sesameQC as input while others directly plot the SigDF objects. Here are some examples:
sesameQC_plotBar()
takes a list of sesameQC objects
and creates bar plot for each metric calculated.
sesameQC_plotRedGrnQQ()
graphs the dye bias between
the two color channels.
sesameQC_plotIntensVsBetas()
plots the relationship
between β values and signal
intensity and can be used to diagnose artificial readout and influence
of signal background.
sesameQC_plotHeatSNPs()
plots SNP probes and can be
used to detect sample swaps.
More about quality control plots can be found in Supplemental Vignette.
sessionInfo()
## R version 4.3.0 (2023-04-21)
## Platform: aarch64-apple-darwin22.3.0 (64-bit)
## Running under: macOS Ventura 13.5.2
##
## Matrix products: default
## BLAS: /Users/zhouw3/.Renv/versions/4.3.0.devel/lib/R/lib/libRblas.dylib
## LAPACK: /Users/zhouw3/.Renv/versions/4.3.0.devel/lib/R/lib/libRlapack.dylib; LAPACK version 3.11.0
##
## locale:
## [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
##
## time zone: America/New_York
## tzcode source: internal
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## other attached packages:
## [1] knitr_1.44 sesame_1.19.8 sesameData_1.19.0
## [4] ExperimentHub_2.9.1 AnnotationHub_3.9.2 BiocFileCache_2.9.1
## [7] dbplyr_2.3.4 BiocGenerics_0.47.0 rmarkdown_2.25
## [10] R6_2.5.1
##
## loaded via a namespace (and not attached):
## [1] tidyselect_1.2.0 dplyr_1.1.3
## [3] blob_1.2.4 filelock_1.0.2
## [5] Biostrings_2.69.2 bitops_1.0-7
## [7] fastmap_1.1.1 RCurl_1.98-1.12
## [9] promises_1.2.1 digest_0.6.33
## [11] mime_0.12 lifecycle_1.0.3
## [13] ellipsis_0.3.2 KEGGREST_1.41.4
## [15] interactiveDisplayBase_1.39.0 RSQLite_2.3.1
## [17] magrittr_2.0.3 compiler_4.3.0
## [19] rlang_1.1.1 sass_0.4.7
## [21] tools_4.3.0 utf8_1.2.3
## [23] yaml_2.3.7 S4Arrays_1.1.6
## [25] bit_4.0.5 curl_5.1.0
## [27] DelayedArray_0.27.10 plyr_1.8.9
## [29] RColorBrewer_1.1-3 abind_1.4-5
## [31] BiocParallel_1.35.4 withr_2.5.1
## [33] purrr_1.0.2 grid_4.3.0
## [35] stats4_4.3.0 preprocessCore_1.63.1
## [37] fansi_1.0.5 wheatmap_0.2.0
## [39] colorspace_2.1-0 xtable_1.8-4
## [41] ggplot2_3.4.4 scales_1.2.1
## [43] SummarizedExperiment_1.31.1 cli_3.6.1
## [45] crayon_1.5.2 generics_0.1.3
## [47] reshape2_1.4.4 httr_1.4.7
## [49] tzdb_0.4.0 DBI_1.1.3
## [51] cachem_1.0.8 stringr_1.5.0
## [53] zlibbioc_1.47.0 parallel_4.3.0
## [55] AnnotationDbi_1.63.2 BiocManager_1.30.22
## [57] XVector_0.41.1 matrixStats_1.0.0
## [59] vctrs_0.6.4 Matrix_1.6-1.1
## [61] jsonlite_1.8.7 IRanges_2.35.3
## [63] hms_1.1.3 S4Vectors_0.39.3
## [65] bit64_4.0.5 jquerylib_0.1.4
## [67] glue_1.6.2 codetools_0.2-19
## [69] stringi_1.7.12 gtable_0.3.4
## [71] BiocVersion_3.18.0 later_1.3.1
## [73] GenomeInfoDb_1.37.6 GenomicRanges_1.53.2
## [75] munsell_0.5.0 tibble_3.2.1
## [77] pillar_1.9.0 rappdirs_0.3.3
## [79] htmltools_0.5.6.1 GenomeInfoDbData_1.2.10
## [81] lattice_0.21-9 evaluate_0.22
## [83] shiny_1.7.5.1 Biobase_2.61.0
## [85] readr_2.1.4 png_0.1-8
## [87] memoise_2.0.1 BiocStyle_2.29.2
## [89] httpuv_1.6.11 bslib_0.5.1
## [91] Rcpp_1.0.11 SparseArray_1.1.12
## [93] xfun_0.40 MatrixGenerics_1.13.1
## [95] pkgconfig_2.0.3