library(sesame)
sesameDataCache()

Calculate Quality Metrics

The main function to calculate the quality metrics is sesameQC_calcStats. This function takes a SigDF, calculates the QC statistics, and returns a single S4 sesameQC object, which can be printed directly to the console. To calculate QC metrics on a given list of samples or all IDATs in a folder, one can use sesameQC_calcStats within the standard openSesame pipeline. When used with openSesame, a list of sesameQCs will be returned. Note that one should turn off preprocessing using prep="":

## calculate metrics on all IDATs in a specific folder
qcs = openSesame(idat_dir, prep="", func=sesameQC_calcStats)

SeSAMe divides sample quality metrics into multiple groups. These groups are listed below and can be referred to by short keys. For example, “intensity” generates signal intensity-related quality metrics.

Short.Key Description
detection Signal Detection
numProbes Number of Probes
intensity Signal Intensity
channel Color Channel
dyeBias Dye Bias
betas Beta Value

By default, sesameQC_calcStats calculates all QC groups. To save time, one can compute a specific QC group by specifying one or multiple short keys in the funs= argument:

sdfs <- sesameDataGet("EPIC.5.SigDF.normal")[1:2] # get two examples
## only compute signal detection stats
qcs = openSesame(sdfs, prep="", func=sesameQC_calcStats, funs="detection")
qcs[[1]]
## 
## =====================
## | Detection 
## =====================
## N. Probes w/ Missing Raw Intensity   : 0 (num_dtna)
## % Probes w/ Missing Raw Intensity    : 0.0 % (frac_dtna)
## N. Probes w/ Detection Success       : 837907 (num_dt)
## % Detection Success                  : 96.7 % (frac_dt)
## N. Detection Succ. (after masking)   : 837907 (num_dt_mk)
## % Detection Succ. (after masking)    : 96.7 % (frac_dt_mk)
## N. Probes w/ Detection Success (cg)  : 835380 (num_dt_cg)
## % Detection Success (cg)             : 96.7 % (frac_dt_cg)
## N. Probes w/ Detection Success (ch)  : 2469 (num_dt_ch)
## % Detection Success (ch)             : 84.2 % (frac_dt_ch)
## N. Probes w/ Detection Success (rs)  : 58 (num_dt_rs)
## % Detection Success (rs)             : 98.3 % (frac_dt_rs)

We consider signal detection the most important QC metric.

One can retrieve the actual stat numbers from sesameQC using the sesameQC_getStats (the following generates the fraction of probes with detection success):

sesameQC_getStats(qcs[[1]], "frac_dt")
## [1] 0.9665611

After computing the QCs, one can optionally combine the sesameQC objects into a data frame for easy comparison.

## combine a list of sesameQC into a data frame
head(do.call(rbind, lapply(qcs, as.data.frame)))

Note that when the input is an SigDF object, calling sesameQC_calcStats within openSesame and as a standalone function are equivalent.

sdf <- sesameDataGet('EPIC.1.SigDF')
qc = openSesame(sdf, prep="", func=sesameQC_calcStats, funs=c("detection"))
## equivalent direct call
qc = sesameQC_calcStats(sdf, c("detection"))
qc
## 
## =====================
## | Detection 
## =====================
## N. Probes w/ Missing Raw Intensity   : 0 (num_dtna)
## % Probes w/ Missing Raw Intensity    : 0.0 % (frac_dtna)
## N. Probes w/ Detection Success       : 834922 (num_dt)
## % Detection Success                  : 96.3 % (frac_dt)
## N. Detection Succ. (after masking)   : 834922 (num_dt_mk)
## % Detection Succ. (after masking)    : 96.3 % (frac_dt_mk)
## N. Probes w/ Detection Success (cg)  : 832046 (num_dt_cg)
## % Detection Success (cg)             : 96.4 % (frac_dt_cg)
## N. Probes w/ Detection Success (ch)  : 2616 (num_dt_ch)
## % Detection Success (ch)             : 89.2 % (frac_dt_ch)
## N. Probes w/ Detection Success (rs)  : 58 (num_dt_rs)
## % Detection Success (rs)             : 98.3 % (frac_dt_rs)

Rank Quality Metrics

SeSAMe features comparison of your sample with public data sets. The sesameQC_rankStats() function ranks the input sesameQC object with sesameQC calculated from public datasets. It shows the rank percentage of the input sample as well as the number of datasets compared.

sdf <- sesameDataGet('EPIC.1.SigDF')
qc <- sesameQC_calcStats(sdf, "intensity")
qc
## 
## =====================
## | Signal Intensity 
## =====================
## Mean sig. intensity          : 3171.21 (mean_intensity)
## Mean sig. intensity (M+U)    : 6342.41 (mean_intensity_MU)
## Mean sig. intensity (Inf.II) : 2991.85 (mean_ii)
## Mean sig. intens.(I.Grn IB)  : 3004.33 (mean_inb_grn)
## Mean sig. intens.(I.Red IB)  : 4670.97 (mean_inb_red)
## Mean sig. intens.(I.Grn OOB) : 318.55 (mean_oob_grn)
## Mean sig. intens.(I.Red OOB) : 606.99 (mean_oob_red)
## N. NA in M (all probes)      : 0 (na_intensity_M)
## N. NA in U (all probes)      : 0 (na_intensity_U)
## N. NA in raw intensity (IG)  : 0 (na_intensity_ig)
## N. NA in raw intensity (IR)  : 0 (na_intensity_ir)
## N. NA in raw intensity (II)  : 0 (na_intensity_ii)
sesameQC_rankStats(qc, platform="EPIC")
## 
## =====================
## | Signal Intensity 
## =====================
## Mean sig. intensity          : 3171.21 (mean_intensity) - Rank 15.7% (N=636)
## Mean sig. intensity (M+U)    : 6342.41 (mean_intensity_MU)
## Mean sig. intensity (Inf.II) : 2991.85 (mean_ii) - Rank 15.6% (N=636)
## Mean sig. intens.(I.Grn IB)  : 3004.33 (mean_inb_grn) - Rank 7.5% (N=636)
## Mean sig. intens.(I.Red IB)  : 4670.97 (mean_inb_red) - Rank 21.2% (N=636)
## Mean sig. intens.(I.Grn OOB) : 318.55 (mean_oob_grn) - Rank 4.2% (N=636)
## Mean sig. intens.(I.Red OOB) : 606.99 (mean_oob_red) - Rank 3.6% (N=636)
## N. NA in M (all probes)      : 0 (na_intensity_M)
## N. NA in U (all probes)      : 0 (na_intensity_U)
## N. NA in raw intensity (IG)  : 0 (na_intensity_ig)
## N. NA in raw intensity (IR)  : 0 (na_intensity_ir)
## N. NA in raw intensity (II)  : 0 (na_intensity_ii)

Quality Control Plots

SeSAMe provides functions to create QC plots. Some functions takes sesameQC as input while others directly plot the SigDF objects. Here are some examples:

  • sesameQC_plotBar() takes a list of sesameQC objects and creates bar plot for each metric calculated.

  • sesameQC_plotRedGrnQQ() graphs the dye bias between the two color channels.

  • sesameQC_plotIntensVsBetas() plots the relationship between β values and signal intensity and can be used to diagnose artificial readout and influence of signal background.

  • sesameQC_plotHeatSNPs() plots SNP probes and can be used to detect sample swaps.

More about quality control plots can be found in Supplemental Vignette.

Session Info

sessionInfo()
## R Under development (unstable) (2021-11-09 r81170)
## Platform: x86_64-apple-darwin20.6.0 (64-bit)
## Running under: macOS Monterey 12.3.1
## 
## Matrix products: default
## BLAS:   /Users/zhouw3/.Renv/versions/4.2.dev/lib/R/lib/libRblas.dylib
## LAPACK: /Users/zhouw3/.Renv/versions/4.2.dev/lib/R/lib/libRlapack.dylib
## 
## locale:
## [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
## 
## attached base packages:
## [1] stats     graphics  grDevices utils     datasets  methods   base     
## 
## other attached packages:
##  [1] knitr_1.39          sesame_1.14.2       sesameData_1.14.0  
##  [4] ExperimentHub_2.4.0 AnnotationHub_3.4.0 BiocFileCache_2.4.0
##  [7] dbplyr_2.1.1        BiocGenerics_0.42.0 rmarkdown_2.14     
## [10] R6_2.5.1           
## 
## loaded via a namespace (and not attached):
##  [1] bitops_1.0-7                  matrixStats_0.62.0           
##  [3] bit64_4.0.5                   filelock_1.0.2               
##  [5] RColorBrewer_1.1-3            httr_1.4.3                   
##  [7] GenomeInfoDb_1.32.2           tools_4.2.0                  
##  [9] bslib_0.3.1                   utf8_1.2.2                   
## [11] DBI_1.1.2                     colorspace_2.0-3             
## [13] withr_2.5.0                   tidyselect_1.1.2             
## [15] preprocessCore_1.58.0         bit_4.0.4                    
## [17] curl_4.3.2                    compiler_4.2.0               
## [19] cli_3.3.0                     Biobase_2.56.0               
## [21] DelayedArray_0.22.0           sass_0.4.1                   
## [23] scales_1.2.0                  readr_2.1.2                  
## [25] rappdirs_0.3.3                stringr_1.4.0                
## [27] digest_0.6.29                 XVector_0.36.0               
## [29] pkgconfig_2.0.3               htmltools_0.5.2              
## [31] MatrixGenerics_1.8.0          highr_0.9                    
## [33] fastmap_1.1.0                 rlang_1.0.2                  
## [35] RSQLite_2.2.14                shiny_1.7.1                  
## [37] jquerylib_0.1.4               generics_0.1.2               
## [39] jsonlite_1.8.0                wheatmap_0.2.0               
## [41] BiocParallel_1.30.2           dplyr_1.0.9                  
## [43] RCurl_1.98-1.6                magrittr_2.0.3               
## [45] GenomeInfoDbData_1.2.8        Matrix_1.4-0                 
## [47] Rcpp_1.0.8.3                  munsell_0.5.0                
## [49] S4Vectors_0.34.0              fansi_1.0.3                  
## [51] lifecycle_1.0.1               stringi_1.7.6                
## [53] yaml_2.3.5                    SummarizedExperiment_1.26.1  
## [55] zlibbioc_1.42.0               plyr_1.8.7                   
## [57] grid_4.2.0                    blob_1.2.3                   
## [59] parallel_4.2.0                promises_1.2.0.1             
## [61] crayon_1.5.1                  lattice_0.20-45              
## [63] Biostrings_2.64.0             hms_1.1.1                    
## [65] KEGGREST_1.36.0               pillar_1.7.0                 
## [67] GenomicRanges_1.48.0          reshape2_1.4.4               
## [69] stats4_4.2.0                  glue_1.6.2                   
## [71] BiocVersion_3.15.2            evaluate_0.15                
## [73] BiocManager_1.30.17           png_0.1-7                    
## [75] vctrs_0.4.1                   tzdb_0.3.0                   
## [77] httpuv_1.6.5                  gtable_0.3.0                 
## [79] purrr_0.3.4                   assertthat_0.2.1             
## [81] cachem_1.0.6                  ggplot2_3.3.6                
## [83] xfun_0.31                     mime_0.12                    
## [85] xtable_1.8-4                  later_1.3.0                  
## [87] tibble_3.1.7                  AnnotationDbi_1.58.0         
## [89] memoise_2.0.1                 IRanges_2.30.0               
## [91] ellipsis_0.3.2                interactiveDisplayBase_1.34.0
## [93] BiocStyle_2.23.1