Skip to contents

Train XGBoost model to predict cell type

Usage

Input_training(
  summary_results,
  cell_type_label,
  number_patterns = 1000,
  cross_validation = FALSE,
  xgb_parameters = list()
)

Arguments

summary_results

a wide cell by pattern matrix generated from GenerateInput function

cell_type_label

a vector of the corresponding cell type label for each row of the summary results

number_patterns

a numeric value to indicate number of patterns to be used (Default: 1000)

cross_validation

a boolean varaible whether to perform cross_validation to obtain the best hyper parameters for the model

xgb_parameters

an optional list for xgb model parameters provided by the user

Value

the xgb model trained